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Faster calculation of the full matrix for least-squares re®nement
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Abstract

Equations derived from a statistical model and valid for
all space groups give estimates of the elements of the
matrix for least-squares re®nement of atomic coordi-
nates and isotropic thermal parameters for a large
crystal structure with many diffraction data. The
elements are functions of the lengths and directions of
Patterson vectors and the distribution of weights as a
function of Bragg angle. For a large data set, this matrix,
or a portion of it, can be calculated in a time that is
approximately proportional to the number of elements
calculated and independent of the number of re¯ections.

1. Introduction

The method of least squares (LS) is widely used for
re®nement of crystal structures. In its traditional
version, the slowest step for large problems is the
calculation of the matrix of sums of products of deri-
vatives, which requires time proportional to the number
of re¯ections times the number of matrix elements. For
half a century, the ambitions of crystallographers have
run ahead of the power of their computers, and for the
larger problems LS has often been used with approxi-
mations to reduce computing time (diagonal, block
diagonal etc.) or else not at all. Since these incomplete-
matrix methods have not always been satisfactory, it
seems worthwhile to try to improve them or to speed up
the full-matrix procedure.

Agarwal (1978) derived a method, based on the fast
Fourier transform (FFT) and an approximate model of
the electron density, which greatly accelerates the
diagonal (or nearly diagonal) approximation. The
calculation of nondiagonal elements of the matrix in this
method has some features in common with the proce-
dure described in the present paper. There are other
methods, which do not calculate the LS matrix, or
calculate it only once, for seeking the minimum of the
LS function with economy of computation (e.g. Prince &
Boggs, 1995; Tronrud et al., 1987). Discussion of these
alternate methods is beyond the scope of the present
paper.

Equations reported here give estimates of matrix
elements for coordinates and isotropic thermal param-
eters as functions of the length and direction of each
interatomic vector and of the distribution of average

weight as a function of Bragg angle. These estimates
become more accurate as the number of re¯ections
increases. The time required to calculate the matrix is
approximately proportional to the number of elements
considered and independent of the number of re¯ec-
tions. These equations give guidance as to which
elements are large and which are small enough to be
neglected.

This derivation applies to large structures and large
data sets. Because there are many atoms and many
re¯ections, it assumes that there is negligible correlation
between the phase of a structure factor F � A� iB and
the phase of the contribution of a single atom, and that
re¯ections are dense enough in reciprocal space that
integrals can be substituted for sums. It also assumes
that re¯ections and their weights are distributed equally
in all directions in reciprocal space, and that thermal
motion is isotropic. The imaginary dispersion terms in
the atomic scattering factors are neglected.

2. The method of least squares

In structure re®nement by LS (e.g. Dunitz, 1979), one
usually seeks to minimize the functionP

H

w�jFoj ÿ jFcj�2; �1�

and assumes that a structure factor F is a linear function
of each parameter for small changes. In this linear
approximation, the normal equations are MX � E,
where X is a vector of parameter shifts, E is a vector with
elements like

Ej �
P
H

w�@jFj=@xj��jFoj ÿ jFcj� �2�

and M, the subject of this paper, is a matrix with
elements of the form

Mjm �
P
H

w�@jFj=@xj��@jFj=@xm�: �3�

In each cycle of re®nement, M and E are calculated
using an input structure and the normal equations are
solved for X to get a new structure.
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3. Estimation of an x, x matrix element

Let j or m identify an atom in the asymmetric unit as
well as the parameters associated with it; p labels the set
of atoms in one unit cell which are equivalent to j, and q
does the same for m. Each atom has a phase ':

' � 2��hx� ky� lz�: �4�
A derivative in (3) for a particular re¯ection H � h; k; l
is

@

@xj

jFj � 2�fjTjh
X

p

�ÿ cos 'F sin 'jp � sin 'F cos 'jp�;

�5�
where fj is the atomic scattering factor (including the
dispersion correction f 0), Tj � exp�ÿBjH

2=4� is the
thermal factor, H is the magnitude of H and 'F is the
phase of F. From (3) and (5),

Mjm � 4�2
P

H;p;q

wfj fmTjTmh2fcos2 'F sin 'jp sin 'mq

� sin2 'F cos 'jp cos 'mq

ÿ �sin�2'F� sin�'jp � 'mq�=2�g: �6�
The third term in the braces in (6) can be neglected if 'F

is not correlated with the atomic phases. The above
equations are valid for any coordinate system that is
used for the LS re®nement. To simplify the following
analysis, assume that the LS basis is Cartesian. Let
indices and coordinates be represented by h, x etc. in this
basis. The transformation of results to orthogonal crystal
axes is trivial. Transformation to an oblique coordinate
system is straightforward but more complicated and
unnecessary. Oblique axes introduce parameter corre-
lations, which are undesirable, and it is easy enough to
use an orthogonal basis (with non-integer hkl) or a
nearly orthogonal one (with a multiple unit cell) for a
non-orthogonal space group.

Now consider Mjpmq, the contribution to the sum in
(6), which comes from a particular pair of atoms jp and
mq. These atoms are separated by a vector L of length L.
A shift of the origin in direct space to the site of atom jp
simpli®es the algebra and does not change the values of
|F | and its derivatives.² Then 'jp � 0 and

'mq � 2��hu1 � ku2 � lu3�; �7�
where u1, u2, u3 is the Patterson vector for this atom
pair. The sum over p and q in (6) corresponds to a sum
over all atom pairs of type j, m. The contribution of atom
pair jp, mq is

Mjpmq �
P
H

Wh2 sin2 'F cos 'mq; �8�

where W � 4�2wfj fmTjTm. To derive a statistical esti-
mate of (8), replace sin2 'F by 0.5, its average value,
and consider a continuum model in which H, w and W
are continuous variables. In this model, w is the average
weight for all re¯ections (including zero weight for those
absent from the data set) in a spherical shell with
average radius H. Rotate the coordinate system so that
L is parallel with the new x axis and the old x is in the
new xy plane. If G � g1; g2; g3 represents H in this new
basis, then

h2 � g2
1 cos2 �� g2

2 sin2 �ÿ g1g2 cos� sin�; �9�
where � � cosÿ1�u1=L� is the angle between L and the
old x axis. Replace the sum in (8) by integration, ®rst
over the surface of a sphere of radius H and then over
the range of Bragg angle:

Mjpmq � vV
RR
0

RH
ÿH

R2�
0

1
2 Wh2 cos'mqH d� dg1 dH; �10�

where � � tanÿ1�g2=g3�, R is the upper limit of H in the
data set, V (the volume of the primitive unit cell) is the
density of re¯ections in reciprocal space and v is the
fraction of solid angle in reciprocal space included in the
data set.

Let s � 2�LH. For the case that � � 0, de®ne a
function S1:

S1 � C
RH
0

2�Hg2
1 cos�2�g1L� dg1; �11�

C � 3=�2�H4�:
The factor C is chosen to make S1 � 1 when s � 0. With
W in place of C, S1 equals the two innermost integrals in
(10). With a change of variable, (11) is reduced to a
standard form:

S1 � �3=s3� Rs
0

t2 cos�t� dt

� 3�2s cos�s� � �s2 ÿ 2� sin�s��=s3: �12�
De®ne a similar function S2 for the case that � � �=2:

S2 � C
RH
0

H cos�2�g1L� R2�
0

g2
2 d� dg1: �13�

Since g2
2 � �H2 ÿ g2

1� sin2 �; (13) reduces to

S2 � C
RH
0

�H�H2 ÿ g2
1� cos�2�g1L� dg1

� C
RH
0

�H3 cos�2�g1L� dg1 ÿ S1=2

� 3�sin sÿ s cos s�=s3: �14�
An integral similar to (11) with g1g2 in place of g2

1 is zero.
Thus, combination of (9), (12) and (14) gives a similar
function Sxx for the general case:

² This is merely an algebraic change of variables, not a change of the
de®nition of the origin which might change the derivatives (cf.
Templeton, 1960).
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Sxx � S1 cos2 �� S2 sin2 �: �15�
Equation (10) can now be written as

Mjpmq � vV
RR
0

�WSxx�=C dH � �2�vV=3� RR
0

H4WSxx dH

�16�
but it is more economical to do some of the computing in
advance of selecting speci®c atom pairs. First de®ne two
functions:

Q1 �
RR
0

H4WS1 dH;

Q2 �
RR
0

H4WS2 dH;

�17�

and evaluate them for a grid of values of L and T 2 for
each combination of scattering factors fj fm. Then
calculate L and � for an atom pair, and interpolate in
these tables for Q1 and Q2. Then (16) becomes

Mjpmq�x; x� � �2�vV=3��Q1 cos2 ��Q2 sin2 �� �18�
and the estimate of the matrix element is

Mjm �
P
p;q

Mjpmq: �19�

At any stage of re®nement, if parameters have changed
enough to justify recalculation of a matrix element, one
must calculate the new L and �, but may use a similar
interpolation in the original tables to obtain Q1 and Q2.

If the LS basis is the unit-cell axes, with a� the
magnitude of the reciprocal a axis and � the angle
between L and that axis, a factor (a�)2 is required on the
right in (19). This and other scale factors cancel out, and
it is easier to comprehend the results if one de®nes a
normalized matrix N whose diagonal elements are unity
and off-diagonal elements are

Njk � Mjk�MjjMkk�ÿ1=2: �20�
Then one need not check if another scale factor is
introduced in the data-reduction process or in the
coding of the LS program. Then Mjm, on the scale of the
LS matrix, is

Mjm � Njm�MjjMmm�1=2; �21�
where the diagonal terms may be those calculated in a
diagonal-approximation LS program.

The same procedure, with permutation of axial
designations, gives the y, y and z, z matrix elements.

4. Estimation of an x, y matrix element

In this section, let Mjm be an x, y matrix element. Then
the factor h2 becomes hk in (6), (8) and (10). Let the
direction of L be de®ned by  and !:

 � tanÿ1�u2=u1�;
! � sinÿ1�u3=L�: �22�

A rotation (different from that in the previous section)
of L to the x direction changes h and k to

h � cos! cos g1 ÿ sin g2 ÿ sin! cos g3;

k � cos! sin g1 � cos g2 ÿ sin! sin g3:
�23�

The function Sxy which substitutes for (15) here is

Sxy � C
RH
0

R2�
0

Hhk cos�2�g1L� d� dg1; �24�

which with use of (11), (13) and (23) becomes

Sxy � cos2 ! sin�2 ��S1 ÿ S2�=2: �25�
Three integrals containing factors g1g2, g1g3 or g2g3 are
zero and have been dropped from (25). Note that (13) is
the same if g2 is replaced by g3. Substitution of Sxy for Sxx

in (16) leads to

Mjpmq�x; y� � ��vV=3��sin�2 � cos2 !��Q1 ÿQ2�: �26�
In the unit-cell basis, if the axes are orthogonal, the
factor to be inserted in (19) is a�b�.

5. Estimation of a B, B matrix element

In this section, let Mjm be a B, B matrix element. If
T � exp�ÿBH2=4�,
@

@Bj

jFj � ÿ� fjTjH
2=4�

X
p

�cos 'F cos 'jp � sin 'F sin 'jp�:

�27�
In place of (6), one has

Mjm �
P
H

�wfj fmTjTmH4=16��cos2 'F cos 'jp cos 'mq

� sin2 'F sin 'jp sin 'mq�; �28�
where the negligible cross term has been omitted. In
place of (8) and (10), one has

Mjpmq �
P

H;p;q

�W=64�2�H4 cos2 'F cos 'mq; �29�

Mjpmq � vV
RR
0

RH
ÿH

R2�
0

�W=128�2�H5 cos 'mq d� dg1 dH

� �vV=32�� RR
0

WSBBH6 dH; �30�

where SBB is the function �sin s�=s. This matrix element
is a function of the length of L, but not of its direction.
The function

Q3 �
RR
0

H6WSBB dH �31�

can be evaluated like Q1 and Q2. Then, (18) becomes
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Mjpmq�B;B� � �vV=32��Q3: �32�

6. Estimation of an x, B matrix element

For an x, B element, a similar derivation gives

Mjm �
P

H;p;q

��wfj fmTjTmhH2=2��cos2 'F sin 'jp cos'mq

ÿ sin2 'F cos 'jp sin 'mq�; �33�
Mjpmq �

P
H

ÿ�W=8��hH2�sin2 'F sin 'mq�: �34�

After the rotation corresponding to (9), the approxi-
mation becomes

Mjpmq � vV
RR
0

RH
ÿH

R2�
0

�W=8���g1 cos�ÿ g2 sin��

�H3 sin�2�Lg1� d� dg1 dH: �35�
The g2 term disappears in the d� integration and (35)
reduces to

Mjpmq � �vV=4� RR
0

W cos�SxBH5 dH; �36�

where the function SxB is

SxB � �sin sÿ s cos s�=s2: �37�
In place of (31) and (32), one has

Q4 �
RR
0

H5WSxB dH; �38�

Mjpmq�x;B� � �vV=4�Q4 cos�: �39�

7. Discussion

The S functions (Fig. 1) measure the contribution of an
atom pair to a matrix element based on re¯ections in a
narrow range of Bragg angle. Their magnitudes become
negligible only for rather large interatomic distances,
particularly so in the case of S1. But integration over the
full range of H damps out the oscillations and gives
matrix elements that are nearly zero for distances more
than a few times the resolution limit of the data.
Examples of normalized matrix elements for space
group P1 are shown in Fig. 2. They were calculated for a
pair of carbon atoms with isotropic thermal parameter
B � 4 AÊ 2 and data extending to a minimum d spacing of
1.5 AÊ . The weight function in this example included a
factor cos��H=2R� to simulate a gradual fading of
re¯ections near the limit of H.

The symmetry of the space group enters this analysis
at (19), the sum over pairs of atoms chosen from two
symmetry-equivalent sets. The number of these pairs is

the product of the site multiplicities and becomes quite
large in high-symmetry space groups but considerable
simpli®cation can occur. In general, in a large structure,
a particular atom jp has no more than one neighbor of
type mq close enough to justify attention. Exceptions
involve atoms on or near symmetry elements. The
symmetry of the Patterson function and the nature of
(18), (26), (32) and (39) causes some pairs to give the
same result or the same magnitude with opposite sign.
For example, for crystals in point group 222, all M[xy]
and M[xB] are zero; Mjpmq[xx] is the same for the four
pairs with equal L, as are the four values of Mjpmq[BB].
Similar statements apply to matrix elements involving y
and z parameters.

Perhaps the greatest economy of this method is that it
seems to justify total disregard of matrix elements for
pairs of atoms never close to each other.

The assumption of lack of correlation of phase made
for this derivation is most likely to break down for

Fig. 1. (a) The functions S1(s) and S2(s); values of Sxx(s) lie on or
between the two curves. (b) Extreme values of Sxy(s). (c) The
functions SBB(s) and SxB(s).
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re¯ections at the lowest Bragg angles or for very heavy
atoms in an otherwise light-atom structure. Heavy-atom
terms can be calculated in the traditional way at little
cost if there are relatively few of them. The same is true
for the contributions of low-angle re¯ections. If the data
are divided into two parts by a sphere of radius D, the

derivation is valid for the contribution of the outer shell
if the lower limit is D in the integrals (17), (31) and (38).

The method requires a description of how the average
weight depends on H, but this step can be based on a
modest sample of a large data set and thus require trivial
computing time. If the weights lack spherical symmetry,
as for example if the range of h is somewhat different
from those of k and l, it is possible that an ellipsoidal
rescaling of reciprocal space could compensate to a ®rst
approximation.

Agarwal's FFT method also associates the matrix
elements with the Patterson vectors. With its use, some
features were observed of the dependence on angles and
distance that is given explicitly in the equations of the
present paper (Isaacs, 1982).

This study allows one to understand why LS elements
tend to depend on angle and distance as they do.
Perhaps it will be useful as a guide in the ongoing search
for the best compromise for choice of approximations
and strategies which speed up computation but inhibit
convergence. The method may even have utility as a
component of re®nement programs, but that has yet to
be tested with real problems. It promises great economy
for computation of the matrix elements, so much so that
this step may not be of much importance for total
computing time. The accuracy of these estimates of
matrix elements has not been determined, but surely
they are better than a diagonal approximation. The
method is also valid when re®nement is based on |F |2

rather than |F |, but with some changes in weights and
scale factors.
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Fig. 2. Normalized matrix elements as a function of interatomic
distance L, calculated for carbon atoms (space group P1) as
described in the text with data terminated at a 1.5 AÊ d spacing. (a)
Extreme values of N[xx]; values for intermediate angles lie between
the two curves. (b) Extreme values of N[xy]. (c) N[BB], independent
of angle, and extreme values of N[xB].


